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Incorporation of Terminal Constraints in 
the FDTD Analysis of Transmission Lines 

Clayton R. Paul, Fellow, IEEE 

A6stmct- A method of incorporating lumped terminal con- 
ditions into a finite-difference, time-domain (FDTD) analysis of 
multiconductor transmission lines is given. The method pro- 
vides an exact solution of the transmission-line equations via 
the FDTD technique when the line discretization, Az, and the 
time discretization, At, are chosen such that At = Az/u where 
i t  is the phase velocity of propagation on the line. Examples 
are given to show that in the case of a multiconductor line in 
an inhomogeneous medium where the mode velocities are not 
identical, the method gives accurate results with a minimum of 
computational effort. 

I. INTRODUCTION 

HE transverse electromagnetic or TEM-mode model of an T (n + 1)-conductor, uniform multiconductor transmission 
line (MTL) is embodied in the MTL equations as [ l ]  

d a 
- V ( z ,  t j  + R I ( z , t j  + ‘ L z l ( z , t )  = 0 az (la) 

d d 
- - I (z , t )  a z  f G V ( 2 , t )  +C-V(z,t) at = 0 (lb) 

where V and 1 are n x 1 vectors of the line voltages (with 
respect to the reference conductor) and line currents, respec- 
tively. The line cross-sectional dimensions are contained in the 
n x n per-unit-length parameter matrices of R (resistance), 
L (inductance), G (conductance), and G (capacitance). The 
position along the line is denoted as z and time is denoted as 
t .  The frequency-domain analysis of uniform multiconductor 
transmission lines is a straightforward computational task 
whether the line is considered lossless or lossy [l]. The 
time-domain analysis of MTL’s is also simple if the line is 
considered lossless [I]. The time-domain analysis of lossy 
MTL’s is considerably more difficult for several reasons. A 
primary reason is that the resistive losses of the conductors 
are due to skin effect and vary with frequency as a. 
The representation of this frequency dependence in the time 
domain is a convolution which presents computational prob- 
lems in a direct, time-domain solution of the MTL equations 
[2]. These problems have led to the use of other solution 
methods for the time-domain analysis of lossy MTL’s. One of 
the important approximate solution techniques is the Finite- 
Difference, Time-Domain method or FDTD [3]-[6]. In that 
method, the line axis z is discretized in AZ increments or 
spatial cells, the time variable t is discretized in At increments 
or temporal cells, and the derivatives in the MTL equations are 
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approximated by finite differences. The solution voltages and 
currents are obtained at these discrete points and represent 
an approximate solution of the MTL equations. In general, 
the accuracy of the solution depends on having sufficiently 
small spatial and temporal cell sizes. The FDTD method has 
been used successfully to solve more general electromagnetics 
problems wherein lossy, nonlinear, and/or inhomogeneous 
media may be considered. The spatial and temporal indepen- 
dent variables of the time-domain Maxwell’s equations are 
similarly discretized, and the boundary conditions are readily 
incorporated [7]. 

MTL’s are simply one-dimensional versions of wave propa- 
gation embodied in the three-dimensional Maxwell’s equations 
for the special case of the TEM or quasi-TEM mode of prop- 
agation. An important difference is the boundary conditions. 
For the full-wave electromagnetics problem, zero tangential 
electric field on the surface of perfect conductors is a primary 
boundary condition. Scattering problems can be handled with 
the absorbing boundary condition [7]. In the case of MTL’s, 
the boundary conditions are lumped loads at the two ends 
of the line, z = 0 and z = L for a line of length C. 
Linear, resistive such terminations can be characterized by 
Generalized Thevenin Equivalents as [ 11 

V(0, t )  = V s  - Rsl(0,  t )  
V ( C ,  tj = VL + RLI(C,  t )  

(2a) 
(2b) 

or a similar Generalized Norton Equivalent or a combination 
of the two. The essential question addressed in this paper is 
how we shall incorporate these lumped terminal constraints 
into the FDTD solution of the MTL equations. In order to 
insure stability in the FDTD solution, the discrete voltage 
and current solution points are not physically located at the 
same point but are staggered one-half cell apart [7]. However, 
the lumped terminal constraints such as in (2) require that 
the current and voltages solution points be collocated. One 
approximate approach to addressing this dilemma has been to 
interpolate the current solution points to the nearest adjacent 
voltage solution point and then use ( 2 )  [3]. It also turns 
out that the discrete voltages and currents must be similarly 
staggered or “interlaced” in time with the time points for the 
voltages and for the currents being spaced one-half temporal 
cell apart [7]. The method shown in this paper provides an 
exact incorporation of the lumped terminal conditions in ( 2 ) .  
Although the exactness of this incorporation will only be 
proven for lossless lines, it is expected that it carries over 
to a similar degree to the case of lossy lines. 

0018-9375/94$04.00 0 1994 IEEE 



86 IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 36, NO. 2, MAY 1994 

I c A z  - I 
I 

Z=O z = L  
Fig. 1 .  
voltage and current solution points. 

The spatial discretization of the line showing location of the interlaced 

T 
m 
c 

n+3D 
It 

n+l 
vk+l 

+A=+ 
2 I . 

Position z 

Fig. 2. 
achieve second-order accuracy in the discretization of the derivatives. 

The relation between the spatial and temporal discretizations to 

11. RIE FDTD FORMULATION 
In order to illustrate the method, consider a two-conductor 

uniform line. To incorporate the terminal conditions and pro- 
vide some generality assume that the line is lossy and has 
an incident electromagnetic field as its excitation in addition 
to the lumped sources in (2). The transmission-line equations 
become [3] 

where the incident field gives rise to distributed voltage and 
current sources VF and IF. The FDTD technique seeks to 
approximate the derivatives in these equations with regard to 
the discrete solution points defined by the spatial and temporal 
cells. It was pointed out in [9] that there are many ways of 
approximating these derivatives yet only certain ones give the 
exact solution. Maxwell’s equations (Faraday’s and Ampere’s 
laws) are coupzed, first-order partial differential equations like 
the MTL equations. Applications of the FDTD method to 
the full-wave solution of Maxwell’s equations have shown 
that accuracy and stability of the solution is achieved if 
we choose the electric and magnetic field solution points to 
alternate in space and be separated by one-half the position 
discretization, e.g., Aa/2, and we choose the solution times for 
these two quantities to also be interlaced in time and separated 
by At12 [7]. To incorporate this experience into the FDTD 
solution of the transmission-line equations, we divide the line 
into NDZ sections each of length AZ as shown in Fig. 1. 

Similarly, we divide the total solution time into segments of 
length At. In order to insure stability of the discretization 
and to insure second-order accuracy we interlace the NDZ 
+ 1 voltage points, VI ,  V2,. - .  , VNDZ, V N D Z + ~ ,  and the NDZ 
current points, I1,12,. . + ,  INDZ,  as shown in Fig. 2. Each 
voltage and adjacent current solution point is separated by 
A2/2. In addition, the time points are also interlaced, and 
each voltage time point and adjacent current time point are 
separated by At12 as illustrated in Fig. 2. The finite difference 
approximations to (3) become [3] 

vn+l k+l - v;+l 

AZ At 

where we denote 

yj E V ( ( i  - l)Az,jAt) (5a) 

(5b) 

and n and IC are integers. Solving these gives the required 
recursion relations: 

A2 9 AZ 9 c -+-Az  V;+l= c - - - A z  V; 
( A t  2 ) ( A t  2 ) 

These are solved in a “bootstrapping” fashion. First the volt- 
ages along the line are solved for a fixed time from (6b) 
in terms of the previous solutions and then the currents are 
solved for from (6a) in terms of these and previous values. 
The solution starts with an initially relaxed line having zero 
voltage and current values. 

Next consider incorporating the terminal conditions. Refer- 
ring to Fig. 1, we represent these as Norton equivalents where 
we allow for lumped sources and loads at z = 0 characterized 
by IS = Vs/Rs and Rs and at z = C characterized by 
IL = VL/& and RL.  Substitute into (6b) for k = 1 

Io = 0 
1 g=- 

R ~ A z  
VS 

I F  = - 
RSAZ 
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Similarly. we impose the terminal constraints at z = L by 
substituting into (6b) for k = NDZ + 1: 

I N D Z + l  0 (sa) 

(8b) 
1 

(1 = ~ ' R ~ , A z  

We will also show that setting 1" = IXDZ+~ = 0 for k = 1 
and k = NDZ + 1 in (6b) requires that we replace CAZ with 
rAz/2 in  only those mo equations. Equation (6b) for all other 
k .  k = 2 . 3 . .  . ., NDZ, must use cAz. In this section we will 
consider lossless lines so we set 

in (6a) for all k and set 

in (6b) for k = 2.3.  . . ., NDZ. This gives the final difference 
equations to be solved. Equation (6b) for k = 1 

Equation (6b) for k = 2 . 3 , .  . ., NDZ 

Equation (6b) for k = NDZ + 1 

Fig. 3.  
time-delayed controlled sources. 

Illustration of an exact model of the transmission line in terms of 

for this set of recursion relations to be stable is the Courant 
condition [7] 

n z  at 5 - 
I /  

which amounts to the condition that the time step must be 
no greater than the propagation time over each cell. The 
Az discretization is chosen sufficiently small such that each 
Az section is electrically small at the significant spectral 
components of the source voltages, L % ( t )  and V, ( t ) .  

Equation (6a) for I .  = 1 . 2 , - . . ,  NDZ 

and 

111. THE EXACT SOLUTION 

It is not obvious that the method of incorporating the 
terminal constraints by using the distributed conductance g and 
distributed induced field source IF  in (4b) or (6b) and making 
the correspondences as in (7) and (8) provide an exact solution 
of the transmission-line equations via the FDTD method when 
the time and position steps are chosen exactly for the Courant 
condition (referred to as the "magic time step" 171). Nor is it 
obvious that we must use cAz/2 in the end sections and cAz 
in the interior sections in (6b) in order to provide this exact 
solution. We now set out to prove this. 

In order to show this we will utilize an exact solution for a 
lossless line that is referred to as the method of characteristics 
or Branin's method [ I ] ,  [ IO] .  The method of characteristics 
provides an exact solution of the transmission line equations 
via the model of Fig. 3. This is the model implemented in the 
SPICE circuit analysis program which can be extended to the 
exact characterization of lossless MTL's [I]. The equations 
resulting from this model are 

The voltages and currents are solved by iterating k for a fixed 
time and then iterating time. The initial conditions of zero 
voltage and current are used to start the iteration. The condition 

where 

V ( 0 .  t )  = Z c I ( 0 ,  t )  + ET(C. t - ?') ( 124  

where 

E,.(C, t - T )  V(C, t - T )  - Z c I ( C .  t - 5") (12b) 

V ( C ,  t )  = - Z c I ( C ,  t )  + E,(O, t - T )  (l3a) 
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Substituting (20) into (18a) and (18b) gives 

zc zc 
Rs Rs 

Vl = -VS - -VI + D - 1 / 2 ( V ~  - ZcI1) (21a) 

I I I 
VB = -&I1 + D-lI' 

I- dz -I- dz -I 
I I I Operating on (21a) with D and (21b) with D1/' and substi- 

Fig. 4. Representation of the discretized line in terms of the exact model 
of Fig. 3. 

where the characteristic impedance is denoted as 

tuting gives 

(22) 
ZC + %(DVS + VS). 

(14) 

The time-delayed controlled sources, E,, and Ei, represent 
the effects of the voltages and currents at the opposite ends 

1 
VC Rewriting (multiplying both sides by R s / 2 Z c )  gives 

D v l =  ( 1 ~ s + f r ) - ' ( ( l ~ s - ~ ) v ~ - R ~ D l / Z I ~  of the line which are delayed in time by the one-way transit 2 ZC 2 zc 
time of the line 

L T I - .  

This is an exact representation of a lossless, two-conductor 
line. Without loss of generality, let us divide the line into one 
section of length AZ and choose solution voltages VA and VC 
at the ends and a solution current, IB, at the midpoint as shown 
in Fig. 4. The remaining voltage and currents, I*, VB, IC, 
would not be solved for in a FDTD solution and are auxiliary 
variables here. Each half of length A z / 2  is modeled with its 
own exact solution with reference to Fig. 3 with time delay 
r I2 where 

AZ 
7 = -. 

v 
In order to simplify the derivation, we use the dijgerence 
operator: 

(17) 

The resulting equations relating all voltages and currents in 
Fig. 4 are 

( 18a) 
(18b) 
(18c) 
(18d) 

~ * : " f ( t )  = f ( t  f mr). 

VA = ZCIA + D-'/'(VB - ZCIB)  

VB = ZCIB + D-l/'(Vc - Z c I c )  
VB = - 2 c I ~  + D-~/ ' (VA  + ZCIA) 

Vc = - Z c I c  + D-'/'(VB + ZCIB).  

We will now derive the recursion relations in (10) from 
this exact model thereby proving the previous method of 
incorporating the terminal constraints into the FDTD solution 
is exact when the temporal and spatial cell sizes are chosen 
as the "magic time step" such that 

A Z  
(19) 

First we will derive (loa). For these purposes, we let 
VA = VI ,  I B  = I1, and V i  = Vz. The objective is to eliminate 
IA ,  VB , IC from these equations and write the result in terms 
of VI,  11, and Vz. The terminal conditions at z = 0 are 

At = -. 
21 

1 + p v s  + v.,}. 
In order to show that (23) is equivalent to (loa) for the magic 
time step in (19) we substitute (19) along with the relation- 
ship between the per-unit-length capacitance and characteristic 
impedance, wc = Z;', into (loa) which gives (23). This shows 
that (loa) is the proper FDTD relation for the end section and 
that for the end section we must use cAz/2  rather that cAz. 

Similarly, we may obtain (1Oc) for the last AZ section at 
z = C by letting VA = VNDZ. IB  = I N D Z ,  and Vc = VNDZ+I. 
The equations are 

VNDZ = ZCIA + D-"'(Vg - ZCINDZ)  (24a) 
VB = -ZCINDZ + D-~"(VNDZ + ZCIA)  (24b) 
VB = ZCINDZ + D-~/ ' (VNDZ+I - Z c I c )  ( 2 4 ~ )  

(24d) 

The objective is to incorporate the lumped terminal conditions 
at z = C and to eliminate IA, VB, IC to give an equations in 
VNDZ, INDZ.  VNDZ+I which, for the magic time step of (19), 
is equivalent to (1Oc). Again this can be readily done as above. 

The remaining tasks are to show that (lob) and (10d) for 
the interior solution nodes are correct for the magic time step. 
First we show that (lob) is correct by letting IA  = Ik-1, 
VB = v k ,  and IC = Ik in (18) and eliminating VA, IB, and 
Vc. Equations (18) become 

VNDZ+I = -&IC + D-'/'(VB + ZCINDZ) .  

VA = ZcIk-1 + D-li2(Vk - ZCIB)  

v k  = ZCIB + D-l/'(Vc - ZCIk) 
vc = - zcIk  + D-l/'(Vk + 2 ~ 1 ~ ) .  

(254 

(25c) 
(254  

Operating on (25a) with D1/' and (25b) with D and substi- 
tuting gives 

v k  = -ZCIB + D-'/'(vA + ZCIk-1) (25b) 

D v ,  = v k  + 2ZcD1/'Ik-1 - ZC(DIB + IB). (26) 

Similarly, operating on (25d) with D-l/' and substituting into 
(25c) gives 

Dvk = v k  - 2ZcD1/'Ik + ZC(DIB + IB) .  (27) 
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Adding (26) and (27) gives 

Substituting the magic time step given in (19) along with 
wc = 2;' into (lob) we obtain (28) demonstrating their 
equivalence. Similarly, we can demonstrate the correctness of 
(1Od) from the circuit model of Fig. 4 by letting VA = Vk, 
IB = 4, and VC = vk+1 in (18) and eliminating IA,  VB, and 
IC.  Equations (18) become 

The objective is to eliminate IA ,  VB, IC from these equations 
and to show that they are equivalent to (10d) for the magic 
time step of (19). Subtracting (29a) from (29d) and operating 
on the result with D gives 

Operating on (29b) and (29c) with D3/2 and subtracting gives 

Substituting (31) into (30) gives 

Substituting the magic time step of (19) along with ZC = vl 
into (10d) we obtain (32) demonstrating their equivalence. 

IV. EXTENSIONS AND OBSERVATIONS 
The above demonstrated that the finite-difference recursion 

relations in (10) are an exact representation of a two-conductor, 
lossless line for the magic time step of (19). In this section 
we will extend those to MTL's and also provide an intuitive 
derivation. 

A common way of approximating transmission lines is 
with lumped-circuit iterative approximations [ 13. One such 
representation is the Lumped Pi representation wherein the line 
is divided into AZ segments and the per-unit-length distributed 
parameters of inductance and capacitance are represented by 
lumped elements. Fig. 5 shows a Lumped Pi model of the 
line with the division points chosen at the above finite- 
difference solution voltage nodes, V I ,  V2, . . . , VNDZ, v N D Z + 1 .  
Each AZ segment is represented by its inductanceJAz, and 
the capacitance is split and placed at the ends of each sec- 
tion as (c/2)Az. The finite-difference current solution points 
I1, 1 2 , -  * * ,  INDZ are through the inductors at the center of each 
section. Observing the interlacing of the solution time points 

INDZ 
-.) 

* - 8  1- Az -+ Az dB I ic 
A 

Fig. 5. Equivalent representation of the FJITD discretization using the 
Lumped Pi circuit model. 

as in Fig. 2, one can derive (10) directly from this circuit. 
In doing so, it is important to observe the relations in Fig. 
2. This shows that, although (10) were derived for resistive 
terminations, they can be extended to dynamic terminations 
so long as the derivatives in those relations are approximated 
according to Fig. 2. Similarly, line losses and incident field 
effects c w  be incorporated using (6). It was shown in [ l l ]  
that the circuit of Fig. 5 is equivalent to a method of moments 
(MOM) Galerkin solution for the frequency-domain and pulse- 
expansion funqtions. This implies a strong connection between 
the FDTD solution method and the MOM method as well 
as the Transmission Line Matrix (TLM) method [12]. Addi- 
tionally, although the termination constraints were modeled 
as shunt elements it appears that a dual procedure could be 
developed for modeling them as series elements. In this case, 
the Lumped T equivalent would replace the circuit of Fig. 5 
HI. 

The recursion relations in (10) were derived for two- 
conductor lines. These can be similarly derived in like fashion 
for a multiconductor line whose terminations are described 
by (2) resulting in 

A t  At  

I 
1 - 2Rsly+1/2 + (v",+1 + v;) 

k = 2 ,  * , NDZ (33b) 

IC = 1 , .  . . , NDZ. (33d) 

Dynamic loads can be incorporated as above by deriving this 
result from the multiconductor version of the equivalent circuit 
in Fig. 5 .  

v. COMPUTED RESULTS 
We will apply these results to two transmission line prob- 

lems. The first is a lossless, two-conductor line having Vs(t) = 
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g 3 0 -  

j 2 0 :  

10 

30 V, Rs = 0 R, VL(t) = 0, and RL = 100 R. The line is of 
length L = 400 m and has TJ = 2 x 10' m/s and ZC = 50 R. 
The exact solution was obtained in [ l ]  by hand and with the 
SPICE program. In all computed results we will designate 

- 

n L 
AZ = - 

NDZ 

(34b) 

The Courant condition for stability of the FDTD solution given 
in (11) translates to 

Final Solution Time 
NDT 

At = 

(35) 
w x Final Solution Time 

C 
NDT 2 NDZ 

The magic time step in (19) occurs for an equality in this 
expression. Fig. 6 shows the results for various discretizations. 
Recall that the Az discretization is chosen such that each sec- 
tion is electriculZy small for the significant spectral components 
of the source waveform. Then the At discretization is chosen 
to satisfy the Courant condition or the magic time step. It 
is shown in [ l ]  that for a pulse having a rise time of T,, 

the high-frequency components of the spectrum roll off at 
- 40 dB/decade above a frequency of l/m-,. In this problem, 
the pulse has T, = 0 so we would not expect adequate 
characterization of all spectral components for other than the 
magic time step. Fig. 6 shows the results using only one spatial 
discretization of the line, NDZ = 1, and the magic time step 
of NDT = 10. Those solution points denoted as x's yield 
the exact solution supporting the above results. If we further 
subdivide the line into NDZ = 200 and use the magic time 
step of NDT = 2000 we again obtain the enact solution. And 
finally, Fig. 6 shows the results for NDZ = 200 but the time 
step is not equal to the magic time step but satisfies the Courant 
condition. Observe that there is considerable "ringing" or 
Gibbs-like phenomena on the leading edges of the waveform. 
Therefore, if we do not choose to use the magic time step we 
must further reduce the AZ discretization (increase NDZ) in 
order to reduce this ringing since the high-frequency spectral 
content extends to very high frequencies for this case of 
7,. = 0. Here the high-frequency spectral content rolls off 
only as - 20 dB/decade [l]. This illustrates an interesting 
"quirk" in the FDTD solution: the magic time step gives the 
exact result but for the same AZ discretization, reducing At 
slightly below the magic time step causes significant deviation 
from the true solution depending on the spectral content of the 
waveform. To illustrate this further, Fig. 7 shows these results 
for a nonzero rise time of T, = 0.1 ps .  The high-frequency 
spectral content of this waveform rolls off at - 40 dB/decade 
above ~ / T T ,  = 3.18 MHz. For NDZ = 200, AZ = 2 m which 
is X/10 at 15 MHz. So a discretization of NDZ = 200 should 
sufficiently process the significant spectral components of this 
waveform. Fig. 7 shows that the severe ringing encountered 
for the zero rise time source and At less than the magic time 
step (NDZ = 200, NDT =-4000) is reduced considerably as 
expected but is not eliminated. 

The next problem is a three-conductor line consisting of 
three 15-mil-wide lands on a glass-epoxy printed-circuit board 
that are separated edge-to-edge by 45 mils [ 11. The line length 

lot 

NDZ=200, NDT=2000 
NDZ=200, NDT=4000 
N D Z = I ,  NDT=lO 

0 ~ ~ " " ' ~ ' ~ ' " " " " ~ '  
0 2 4 6 8 10 12  1 4  1 6  1 8  20 

mYE (mkrowcondr) 

Fig. 6. 
30-V pulse with a zero rise time, 7,. = 0. 

Solution for a line of length 400 m and a 100-0 load for Vs(t)as a 

4 0 1  

NDZ=200, NDT=2000 
NOZ=200, NDT=4000 1 NOZ=l .NDT=lO 

is 0.254 m and the per-unit-length parameters are 

40.6280 -20.3140 pF/m. 1 -20.3140 29.7632 c =  [ 
The terminal conditions are 

VL(4 = [:] 
50 0 

R L =  [ o  501 c2 
where Vs(t) is a 1-V pulse having a rise time of 7,. = 6.25 ns. 
Fig. 8 shows the FDTD results compared to the exact results 
computed by Branin's method and implemented in SPICE [ 11. 
The line has two mode velocities, w1 = 1.80065 x 10' m / s  
and w2 = 1.92236 x 10' d s .  The AZ discretization is chosen 
to make each section electrically short at 1/m, = 51 MHz 
giving, using the smaller mode velocity wl, AZ < 0.353 m. So 
we choose NDZ = 2. Using the larger mode velocity to set the 
magic time step gives NDT = 60. The comparison between the 
exact solution and the FDTD solution for the magic time step 
is excellent. Observe that even when the time discretization is 
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~ SPICE Model (Lossless) 
Finite Difference NO2 2,NOT=60) 
Finite Difference [NDZI2,NDT=600) . 

100 

> 
E 
Y 

Q 2 50 

c c 
8 
I 

0 

Time (nanoseconds) 
Fig. 8. 
5 0 4  terminations and a 1-V pulse with a 6.25-11s rise time. 

Solution for the near-end crosstalk on a printed-circuit board having 

reduced from that of the magic time step, NDZ = 2, NDT = 
600, the correlation remains excellent. This demonstrates that 
even in the case of MTL’s in inhomogeneous media where 
the mode velocities are different so that the discretization can 
be chosen equal to the magic time step for only one of those 
velocities, the FDTD method can still give accurate results 
even though the other mode velocities do not satisfy the magic 
time step criterion. 

VI. SUMMARY AND CONCLUSION 
This paper has shown a method for incorporating lumped 

terminal constraints into an FDTD analysis of the transmission 
line equations. If the position and time discretizations are 
chosen to satisfy the magic time step, At = Az/v, for a two- 
conductor line, the FDTD method yields the exact solution 
of the transmission-line equations within approximation or 
discretization error. In the case of MTL’s in inhomogeneous 
media where the magic time step cannot be attained for both 
mode velocities, computed results demonstrated that excellent 
predictions can still be attained. 
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